Section 5.4 The Fundamental Theorem of Calculus
(Minimum Homework: all odds)
We will learn how to find the exact area between the graph of a continuous (unbroken) function and the x-axis in this section.

We need to learn a new symbol to perform the area calculations in this section.

Definite integral notation / symbol.
$\int_{a}^{b} f(x) d x$
This integral notation is called a definite integral (the letters a, b make it definite)

This integral notation asks us to calculate the "net" area between the graph of $f(x)$ and the x-axis over the interval $[\mathrm{a}, \mathrm{b}$] (provided the graph of $f(x)$ is continuous over the interval)

The Fundamental theorem of Calculus

Given a function $f(x)$ that is continuous over the interval $[a, b]$ if $F(x)=\int f(x) d x$

Then: $\int_{a}^{b} f(x) d x=F(b)-F(a)$
This theorem basically tells us that the desired area can be calculated as follows:
Step 1: Perform the integration
Step 2: Evaluate the integral at b, then a.
Step 3: Subtract the results to determine the area.

Here is a graph of $f(x)=x^{2}$ that we looked at section 5.3.
Calculating $\int_{1}^{5} x^{2} d x$ will give us the shaded area

Example: Use the Fundamental Theorem of Calculus to evaluate the definite integral.
$\int_{1}^{5} x^{2} d x$

Step 1: Perform the integration. Use this rule: Power Rule:
$\int_{1}^{5} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{1} ^{5}$
(notice I kept the 1 and 5, as I will need these numbers on step 2.) (I don't use the $+C$ when I am finding a definite integral. The C would cancel on the next step.)

Step 2: Evaluate the integral at 5, then at 1
$\frac{1}{3} * 5^{3}=\frac{1}{3} * 125=125 / 3$
$\frac{1}{3} * 1^{3}=\frac{1}{3} * 1=1 / 3$
Step 3: Subtract the results to determine the answer
$\int_{1}^{5} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{1} ^{5}=\frac{125}{3}-\frac{1}{3}=\frac{124}{3} \cong 41.33$
Answer: $\int_{1}^{5} x^{2} d x=\frac{124}{3}$
(I will show you how to check this answer using a TI graphing calculator)

The area that the Fundamental Theorem of Calculus computes is a "net" area.

- areas of regions above the x-axis are positive.
- areas of regions beneath the x - axis are negative.

Here is a graph of the function $f(x)=x \quad$ with shading between 2 , and 2

The graph produces 2 triangles that have the same area.
Both triangles have a base of 2 and a height of 2
Top triangle area: $\frac{2 * 2}{2}=2$ square units
Bottom triangle area: $\frac{2 * 2}{2}=2$ square units
The integral use to compute the shaded area will equal 0 .
$\int_{-2}^{2} x d x=0$
The bottom triangle's area will be considered -2 , and the top triangle's area +2 . The net area will be 0 .

Let us find the integral to confirm that it is in fact equal to 0 .
Example: Use the Fundamental Theorem of Calculus to evaluate the definite integral.
$\int_{-2}^{2} x d x$
Step 1: Perform the integration. Use this rule: Power Rule:
$\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C$ provided $x \neq-1$
$\int_{-2}^{2} x d x=\left.\frac{1}{2} x^{2}\right|_{-2} ^{2}$
Step 2: Evaluate the integral at 2, then at -2
$\frac{1}{2}(2)^{2}=\frac{1}{2} * 4=2$
$\frac{1}{2}(-2)^{2}=\frac{1}{2} * 4=2$
Step 3: Subtract the results to determine the answer $\int_{-2}^{2} x d x=2-2=0$

Answer: $\int_{-2}^{2} x d x=0$

Example: Use the Fundamental Theorem of Calculus to evaluate the definite integral.
$\int_{1}^{e} 6 x^{-1} d x$

Step 1: Perform the integration.
Rewrite using: $\int a f(x) d x=a \int f(x) d x$
$\int_{1}^{e} 6 x^{-1} d x=6 \int_{1}^{e} x^{-1} d x$
Integrate using: "ln" Rule: $\left\{\int x^{-1} d x=\ln |x|+C\right.$
$\int_{1}^{e} 6 x^{-1} d x=6 \int_{1}^{e} x^{-1} d x=6 \ln |x|_{1}^{e}$ (instead of writing a C I keep the 1 and e)

Step 2: Evaluate the integral at e, then at 1
$6 \ln |e|=6 * 1=6 \quad($ hint $\ln (e)=$
1 , can do on calculator if needed)
$6 \ln |1|=6 * 0=0$ (hint $\ln (1)=$
0 , also can use calculator if needed)
Step 3: Subtract the results to determine the answer
$\int_{1}^{e} 6 x^{-1} d x=6-0=6$
Answer: $\int_{1}^{e} 6 x^{-1} d x=6$

Example: Use the Fundamental Theorem of Calculus to evaluate the definite integral.
$\int_{0}^{1} 20 x\left(5 x^{2}-4\right)^{5} d x$
Step 1: Perform the integration.
I borrowed this integration from section 5.2. I attached the work on how to compute the integral on the next few pages. (integration work shown in blue, and takes 2 pages)
$\int_{0}^{1} 20 x\left(5 x^{2}-4\right)^{5} d x=\left.\frac{1}{3}\left(5 x^{2}-4\right)^{6}\right|_{0} ^{1}$

Step 2: Evaluate the integral at 1 then at 0
$\frac{1}{3}\left(5(1)^{2}-4\right)^{6}=\frac{1}{3}(1)^{6}=\frac{1}{3} * 1=\frac{1}{3}$
$\frac{1}{3}\left(5(0)^{2}-4\right)^{6}=\frac{1}{3}(-4)^{6}=\frac{1}{3}(4096)=\frac{4096}{3}$
Step 3: Subtract the results to determine the answer
$\int_{0}^{1} 20 x\left(5 x^{2}-4\right)^{5} d x=\frac{1}{3}-\frac{4096}{3}=-\frac{4095}{3}=-1365$
(The negative indicates more of the graph is beneath the $x-$ axis than is above.)

Example: Rewrite a problem that has a parenthesis with an exponent using u - substitution, then integrate to find the answer.
$\int 20 x\left(5 x^{2}-4\right)^{5} d x$
Rewrite the problem so that the parenthesis is first:
$=\int\left(5 x^{2}-4\right)^{5} 20 x d x$
Next: let $u=$ inside of the parenthesis
let $u=5 x^{2}-4$

Rewrite the problem so that the "parenthesis is changed to an " u "
$=\int u^{5} 20 x d x$
Next find $\frac{d u}{d x}$
$u=5 x^{2}-4$
$\frac{d}{d x} u=\frac{d}{d x} 5 x^{2}-\frac{d}{d x} 4$
$\frac{d u}{d x}=10 x$
Multiply by $d x$ to clear the fraction.
$d x \frac{d u}{d x}=10 x d x$
$d u=10 x d x$

$$
\begin{aligned}
& \text { This is not good enough. I need to replace } 20 x d x \text {. } \\
& \text { Multiply by } 2 \text {. } \\
& 2 d u=2 * 10 x d x \\
& 2 d u=20 x d x \\
& \text { Next replace } 20 x d x \text { with } 2 d u \\
& =\int u^{5} 20 x d x=\int u^{5} 2 d u=\int 2 u^{5} d u \\
& \text { Rewrite using: } \int a f(x) d x=a \int f(x) d x \\
& =2 \int u^{5} d u \\
& \text { Next integrate: use Power Rule: } \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \text { provided } x \neq-1 \\
& =2 * \frac{1}{6} u^{6}+C \\
& =\frac{1}{3} u^{6}+C
\end{aligned}
$$

Last change u to $5 x^{2}-4$ to get the answer
Answer: $\frac{1}{3}\left(5 x^{2}-4\right)^{6}+C$

Section 5.4 The Fundamental Theorem of Calculus
(Minimum Homework: all odds)
\#1-24 Use the Fundamental Theorem of Calculus to evaluate the definite integral.

1) $\int_{2}^{5}(4 x-3) d x$
2) $\int_{1}^{6}(2 x-5) d x$
$1^{\text {st }}$:
$\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$
$2^{\text {nd }}: \int a f(x) d x=a \int f(x) d x$
$3^{\text {rd }}$
Power Rule:

Integral of a constant Rule: $\int a d x=a x+$ C (a is any real number)
$4^{\text {th }}$ Evaluate the integral at 1 then at 0
$5^{\text {th }}$ subtract the results to get the answer
answer: $\int_{1}^{6}(2 x-5) d x=10$
3) $\int_{3}^{7} 5 d x$
4) $\int_{2}^{9} 6 d x$
$1^{\text {st: }}$ Integral of a constant Rule: $\int a d x=a x+$ C (a is any real number)
$2^{\text {nd }} \quad$ Evaluate the integral at 9 then at 2
$3^{\text {rd }}$ subtract the results to get the answer

Answer: $\int_{2}^{9} 6 d x=42$
5) $\int_{0}^{3}\left(4 x^{3}+3 x^{2}-7\right) d x$
6) $\int_{0}^{2}\left(8 x^{3}-6 x^{2}+2\right) d x$
$1^{\text {st: }}$
$\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
$\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$
$2^{\text {nd }}: \int a f(x) d x=a \int f(x) d x$
$3^{\text {rd }}$:
Power Rule:

Integral of a constant Rule:
$4^{\text {th }}$ Evaluate the integral at 2 then at 0
$5^{\text {th }}$ subtract the results to get the answer
answer: $\int_{0}^{2}\left(8 x^{3}-6 x^{2}+2\right) d x=20$
7) $\int_{0}^{2} 3 e^{x} d x$
8) $\int_{0}^{4} 2 e^{x} d x$
$1^{\text {st: }} \int a f(x) d x=a \int f(x) d x$
$2^{\text {nd }}$: " e " Rule $\int e^{x} d x=e^{x}+C$
$3^{\text {rd }}$ Evaluate the integral at 4 then at 0
$4^{\text {th }}$ subtract the results to get the answer
answer: $\int_{0}^{4} 2 e^{x} d x=2 e^{4}-2$
9) $\int_{1}^{e} \frac{3}{x} d x$
10) $\int_{1}^{e^{2}} \frac{5}{x} d x$
$1^{\text {st. }}$: Rewrite with -1 exponent
$2^{\text {nd }}: \int a f(x) d x=a \int f(x) d x$

3rd: "ln" Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$
$4^{\text {th }}$ Evaluate the integral at e^{2} then at 1
$5^{\text {th }}$ subtract the results to get the answer
answer: $\int_{1}^{e^{2}} \frac{5}{x} d x=10$
11) $\int_{1}^{e} 7 x^{-1} d x$
12) $\int_{1}^{e} 2 x^{-1} d x$
$1^{\text {st }}: \int a f(x) d x=a \int f(x) d x$
$2^{\text {nd }}:$ " \ln " Rule: $\left\{\begin{array}{c}\int x^{-1} d x=\ln |x|+C \\ \int \frac{1}{x} d x=\ln |x|+C\end{array}\right.$
$3^{\text {rd }} \quad$ Evaluate the integral at e then at 1
$4^{\text {th }}$ subtract the results to get the answer
answer: $\int_{1}^{e} 2 x^{-1} d x=2$
13) $\int_{1}^{2} 3(3 x+1)^{2} d x$
14) $\int_{1}^{2} 7(7 x-4)^{2} d x$ Rewrite the problem so that the parenthesis is first:

Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: use Power Rule:

Last change u back to compute the integral

Evaluate the integral at 2 then at 1
subtract the results to get the answeranswer
$\int_{1}^{2} 7(7 x-4)^{2} d x=\frac{973}{3}$
15) $\int_{1}^{2} 9(3 x+1)^{2} d x$
16) $\int_{1}^{2} 14(7 x-4)^{2} d x$

Rewrite the problem so that the parenthesis is first:
Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Not good enough, multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: use Power Rule:

Last change u back to compute the integral

Evaluate the integral at 2 then at 1
subtract the results to get the answer
answer: $\int_{1}^{2} 14(7 x-4)^{2} d x=\frac{1946}{3}$
17) $\int_{-2}^{4}(2 x)\left(x^{2}-1\right)^{2} d x$
18) $\int_{-2}^{1}(2 x-4)\left(x^{2}-4 x+1\right)^{2} d x$

Rewrite the problem so that the parenthesis is first:
Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: use Power Rule:

Last change u back to compute the integral

Evaluate the integral at 1 then at -2
subtract the results to get the answer
answer: $\int_{-2}^{1}(2 x-4)\left(x^{2}-4 x+1\right)^{2} d x=-735$
19) $\int_{-2}^{4}(6 x)\left(x^{2}-1\right)^{2} d x$
20) $\int_{-2}^{1}(6 x-12)\left(x^{2}-4 x+1\right)^{2} d x$

Rewrite the problem so that the parenthesis is first:
Next: let $u=$ inside of the parenthesis

Rewrite the problem so that the "parenthesis is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Not good enough, multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: use

Last change u back to compute the integral

Evaluate the integral at 1 then at -2
subtract the results to get the answer
answer: $\int_{-2}^{1}(6 x-12)\left(x^{2}-4 x+1\right)^{2} d x=-2205$
21) $\int_{0}^{1} 3 x^{2} e^{x^{3}} d x$
22) $\int_{0}^{1} 2 x e^{x^{2}} d x$

Rewrite the problem so that the " e " is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u "

Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to calculate the integral

Evaluate the integral at 1 then at 0
subtract the results to get the answer
answer: $\int_{0}^{1} 2 x e^{x^{2}} d x=e-1$
23) $\int_{0}^{1} 6 x^{2} e^{x^{3}} d x$
24) $\int_{0}^{1} 8 x e^{x^{2}} d x$

Rewrite the problem so that the " e " is written first:

Next: let $u=$ exponent of the e

Rewrite the problem so that the exponent is changed to an " u " Next find $\frac{d u}{d x}$

Multiply by $d x$ to clear the fraction.

Not good enough, multiply to make a perfect match

Next replace to make problem only have u's

Next integrate: " e " Rule $\int e^{x} d x=e^{x}+C$

Last change u back to calculate the integral
Evaluate the integral at 1 then at 0
subtract the results to get the answer
answer: $\int_{0}^{1} 8 x e^{x^{2}} d x=4 e-4$

